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Finite-Element Solution of Unbounded Field Problems

BRUCE H. MCDONALD AND ALVIN WEXLER

Abstract—An unbounded region is divided into local picture-
frame regions where a partial dfierential-equation solution is ob-

tained, with the remaining unbounded region represented by an
integral equation. (The method permits theuseof free-spaee Green%
functions, and thus special problem-dependent Green’s functions
need not be found.) The integral equation is formulated as a con-

straint upon the local picture-frame solutions, whence these local
solutions are solved directly by a variational method, using finite
elements, in a manner such that the problem of the Green%-func-

tion singularity is side-stepped. The technique is applicable where

sources and media inhomogeneities and anisotropies are local, and

can all be placed within one or several picture frames. It is in these

cases that the integral-equation approach is at a particular disad-

vantage, and the use of a partial differential-equation technique is

advisable if not necessary. Examples presented include the static

and harmonic fields of a parallel-plate capacitor, a microstrip line

on a dielectric substratum, and a radiating antenna with dielectric

obstacles.

1. INTRODUCTION

F

IELD PROBLELIS, where the region of interest

is bounded, are customarily solved by formulating

a partial differential equation and using knowledge

of the boundary conditions to obtain the solution. When

the region of interest is unbounded it is customary to

use an integral-equation method to obtain a local charge

distribution, and from this the fields as required. Inte-

gral equations often possess singular kernels that can

produce “algorithmic nightmares” [1], and such meth-

ods depend upon the existence of an ‘(action-at-a-dis-

tance” Green’s function that may be very difficult to

find, especially when inhomogeneities or anisotropies

occur. Moreover, certain algorithmic niceties about a

partial differential-equation solution, along with demon-

strable capabilities for handling inhomogeneities and

anisotropies, invite the analyst to seek ways of solving

unbounded field problems using differential techniques.

If sources, media inhomogeneities, and anisotropies

are local, a surface may be defined to enclose them. The

internal region so defined is bounded, and differential

techniques may be used there. In the remaining un-

bounded region an integral equation may be formulated

using only a simple free-space Green’s function. The

field at the surface may be interpreted two ways: as a

boundary condition for the differential-equation formu-

lation of a boundary-value problem; and as an equiva-

lent source distribution for the exterior integral equa-

tion. If continuity of field and first derivatives are en-
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forced between these two formulations at the surface,

the problem is readily solved.

When iterative procedures are used to solve this prob-

lem, the technique belongs to the well-known class of

bound ary-relaxation methods. This paper presents a

methcld whereby the bounded region is solved directly

by a variational technique using finite elements, with

the integral equation as a constraint.

1[1. GENERAL DESCRIPTION OF THE METHOD

A two-dimensional, or plane, problem is discussed in

detail, although extension to three-dimensional prob-

lems can readily be made.

Fig, 1 (a) shows a portion of the infinite x–y plane in

Cartesian coordinates (for definiteness, z= O). A

bouncled region called a picture frame RI is placed so as

to contain all sources, inhomogeneities, and anisotropies.

The boundary of the picture frame is designated 131, and

the unbounded exterior region is RE. The picture frame

represents a boundary-value problem \vith boundary

conditions as yet unspecified. It is solved by the tinite-

element method.

We now introduce a closed contour Cl, as shown in

Fig. 1 (b). The region of the plane outside Cl is called R.,

and it is stipulated that the region of overlap between

Rc and RI be source free, homogeneous, and isotropic.

This is not really a restriction, since the picture frame

and cmtour can be placed as desired.

In the exterior region R. an integral equation is used

to relate the field at any point in R, to the field (or a

function of the field that can be considered as an equiva-

lent charge distribution) on the contour Cl. In particu-

lar, we evaluate the integral equation at points on .B1,

the picture-frame boundary. This produces a set of con-

strain ts upon the picture-frame field that forces it to

assume, at the boundary Bl, the correct value for the

unbounded problem. The overlap region precludes

evaluation of the integral equation at a source point,

thus side-stepping problems with Green’s-function sin-

gularities.

Extension to several picture frames is straightforward

—a contour C may be defined consisting of a closed

contour Cl in each frame with cuts defined between

these Cl, which disappear in integration and which link

the picture frames together. See Fig. 1 (c).

The method is applicable to problems having un-

bounded regions provided that:

1) sources, inhomogeneities, and anisotropies are

local, so that they may be completely enclosed

within picture frames;
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(a)

[b)

Fig. 1. The infinite plane, the picture frame, and associate contours.
(a) The picture frame R,, its boundary B,, and the external region
RE. (b) The contour C,andthe region external toit Rc. (c) The
linking of two picture frames.

2) afree-space Green’s function exists;

3) local picture-frame solutions are constructed so

that field values at the boundary can be linearly

expressed in terms of field values on the contour Cl.

Physically, it is possible to interpret the exterior inte-

gral-equation formulation as the replacement of the

picture-frame solution by an equivalent-source or

charge distribution along the contour Cl. Alternatively,

the picture-frame solution involves the replacement of

the free-space problem by an equivalent-boundary con-

dition on B1.

Static and harmonic electromagnetic-field problems

are easily solved, and the finite-element method readily

admits the linear constraint equations.

III. PREVIOUS WORK

Several related schemes have recently been reported,

which, in the main:

1) have used finite-difference techniques for the pic-

ture-frame solutions;

2) have been used for only one picture frame, with no

indication otherwise;

3) have been restricted to Laplace’s equation;

4) have had to cope with singularities of Green’s

functions.

Silvester and Cermak [2], [3] in effect chose Cl very

close to B1 within one grid point in their finite-difference

representation. This choice allows a direct linking of

potentials on Cl and B1 with finite differences, but intro-

duces problems with Green’s-function singularities. The

scheme does not preclude choosing Cl further away from

Bl, although such a choice would require additional

equations to relate potentials, and could possibly affect

convergence of the iterative process.

More recently Silvester and Hsieh [4] have applied

finite elements, using a functional which effectively

minimizes energy in all space, including RE. This ap-

proach appears to be limited to the Laplace operator

(where total energy is finite), and the problem of singu-

larity of the Green’s function remains.

Sandy and Sage [5] in effect choose Cl to lie along the

surface of a conductor in the picture frame (a TEM

microstrip problem). Problems with Green’ s-function

singularities are avoided, since potentials are not evalu-

ated at source points. They use an iterative procedure

to obtain their solution, beginning with an estimate of

potential on Bl, evaluating the field by SOR with finite

differences to determine sources on Cl, and then com-

puting a potential for B1 from the integral equation.

This potential is used to make a better estimate, and

the procedure recycles. They point out that convergence

is not guaranteed, and, in fact, use underrelaxation to

improve their estimate for potential on B1. Computation

time is undoubtedly high, and media inhomogeneities

must be very carefully provided for. Their technique

permits sources outside the picture frame when these

can be added as a lumped contribution.

Greenspan and Werner [6] discuss a finite-difference

approach for the Helmholtz operator, and show that

solutions do exist, are unique, and can be numerically

obtained. The contour Cl is taken coincident with Bl,

thus producing singularity problems.

IV. THE FINITE-ELEMENT METHOD

The finite-element method, used to produce a field

solution for a bounded region, such as RI in Fig. 1, is

described in detail by Silvester [16], and Richards and

Wexler [7], with extension to provide for anisotropic,

continuously inhomogeneous regions given by Wexler

[8]. The book by Zienkiewicz [18] is also a good ref-

erence.

Using the example of Poisson’s equation in a continu-
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ous khomogeneous region, we have

–V. (ev+) =f within RI. (1)

Thequadratic functional isdiscussed fullyin [14, pp.

291–318], and using the forms given in [17, eqs. (96)

and (112) ], we have, in general

F=
s

eV+* . V@) dxdy —
s

@ dxdy – s@*fdxdy (2a)
R1

F= JI
EL

e W2dxd,-2~ {S’yjdxd;} (2,)

where clearly V@*. V@= I V@ I ‘. The superscript * de-

notes the complex conjugate. For positive e, F possesses

the desirable characteristic of positive definiteness.

The field within RI is represented by a combination

of appropriate polynomial interpolatory functions aj,

defined on an element basis, and node potentials ~,,

which are field values at n specific points in RI

+ = k a,4u (3a)
j= 1

where by definition a, takes on the values

{

1, at nodej
l-Jj =

o, at other nodes.
(3b)

The subscript j refers to node positions, some internal

(subscripted 1) and some on the boundary (subscripted

l?). Then, in vector notation, (3a) may be written

@ = ~BT+B + ~IT+I = $BTaB + ~ITQ!I, (4)

We may define four matrices, AII, AIB, ABI, and ABB,

for example

Allr =
s

cVCYB VarT dxdy (5)
R1

and vectors br and bB, for example

br =
s

CYIj dxdy. (6)
R,

The integral-equation constraint produces a linear

relationship between ~B and @I, which is written, as

shown in Section V, (17)

~B = M$I. (7)

Now we make use of (4)–(7) to rewrite (2)

F = +lT{ A1l + AIBM + MTABI + MTABBM} @r

— 2@T{ b, + MTbB} . (0

Positive definiteness of the functional is not altered by

the substitutions. At the solution point, F is a minimum

and its derivative with respect to the vector & is a zero

vector. Performing this differentiation, and equating

this derivative to a zero vector, we obtain the positive-
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definite system

[A,r + AI.M + M“ABz + MTABBM]&

= b,+ MTbB. (9)

The matrices produced by this finite-element formu-

lation are smaller in size but more dense than finite-

difference matrices. The problems presented here con-

sist of about 60 unknowns. Although these matrices

may be block sparse with an appropriate node ordering

system, permitting large problems to be solved by block-

iterative techniques, they are treated here as being dense.

Types of errors occurring in the finite-element method

are discussed in [7], along with some indication of com-

puter-time requirements.

For the case of several picture frames, the representa-

tion is extended to include all nodes in all picture frames,

and the derivation proceeds identically.

The finite-element method provides good solutions

when the field is naturally polynomic or close to poly -

nomic. Derivative singularities, such as those occurring

at edges of conductors, are not well approximated. Ex-

tensions of the finite-element method to provide for

such singularities are presented by D6creton and Wexler

[9]; m,uch improved accuracy is obtained.

The Helmholtz operator alters the functional slightly,

and positive definiteness is guaranteed only for fre-

quent ies below the lowest eigenfrequency of an y picture-

frame region. These regions should therefore be kept

sufficiently small to ensure that this is so. This will be

discussed in a subsequent publication.

V. THE INTEGRAL-EQUATION CONSTRAINT

In the region outside C, in Fig. 1(b), which we have

called R., Laplace’s equation holds

v%#(x,y) = o. (lo)

Also, the Green’s relation

– V2G(X, y I 3$0, Yo) = 8(X – XO, y – ~0) (11)

is applicable, and since Ro is assumed to be source free,

homogeneous, and isotropic, the free-space Green’s func-

tion may be used

1
G(x, y [ %, YIJ) = – — in ti(x – XO)2 + (y – yo)’. (12)

27reo

Multiplying (10) by G, (11) by ~, adding the resulting

equations, and integrating over R., we obtain

4($, y) = ~ ~@)Yl &~)V2@(LP)
Rc

— d(t, ,0) V2G(X, Y t t, P) ] dtdp (13)

for any point (x, y) in RC. Applying Green’s theorem, we

obtain:
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Note that Cl is only part of a larger closed-contour C,

the outer parts of which are cuts which disappear in

integration, and a part at infinity whose contribution

to the integration vanishes. See Stakgold [10, pp.

142-143].

Field quantities on Cl in (14) may be represented by

the node functions and potentials given by (4)

{$( d~IT
~= G— )}cqT ; ds c#)I

C* c% –

{$( d@3T
+ G — — ))ct~T ~ ds OB. (15)

cl aft

Once all node potentials are established, (15) is used to

determine the field at any point in space outside the

picture frame.

To produce the constraint equation, (15) is evaluated

at all node points on the boundary B1. Thus

~B = PI~I -1-- PB~B (16)

where rows of the matrices PI and PB are determined

from (15) and evaluated for each of the boundary node

points.

An adjustment of (16) puts it into the form of (7)

+, = (I – pB)-lpI@T = h!+,. (17)

Again there is no restriction to j ust one picture frame.

If more than one picture frame is employed, each has

its own boundary nodes and contour Cl. The derivation

proceeds similarly for the Helmholtz Green’s function,

excepting that complex arithmetic must be used.

Contour integration along Cl is performed numerically

using the trapezoidal rule at present; three-figure accu-

racy is easily obtained. The computer time required for

these integrations has been found not to exceed 30 per-

cent of that required to build the finite-element ma-

trices.

VI. EXAMPLES

Several examples are presented using the method de-

scribed. The square parallel-plate capacitor shows the

accuracy of the scheme for an electrostatic problem,

while other examples show placement of dielectric ma-

terial, harmonic-field problems, and the use of several

picture frames in one problem.

A. The Square Parallel-Plate Capacitor

A cross section of the geometry is shown in Fig. 2 (a),

representing two infinitely long, thin, conducting plates

of width equal to their separation. A single picture-

frame boundary and contour are labelled BI and Cl,

respectively. Considering the symmetries involved, the

solution can be obtained in the positive quadrant, and,

accordingly, finite elements are placed there. This re-

duced picture frame is bounded by one-quarter of Bl,

where the integral constraint is applied, and by parts

of the x and y axes, where homogeneous Dirichlet and

Y

I I
(01

exact — approximate ––—–-

1I 00
---

0 e8

~ e>%~.
O 48
0,38
0 2e
O 18

o------a

Fig. 2, The parallel-plate capacitor. (a) Cross section showing the
picture frame. (b) Electrostatic equipotentials in the reduced pic-
ture frame.

Neumann boundary conditions are imposed, respec-

tively, to provide for the symmetries. Integration along

the contour CI is facilitated by choosing it symmetri-

cally, in order that appropriately signed images of the

field values in the positive quadrant may be used in the

other three.

The edge of the capacitor plate within the reduced

picture frame causes a derivative singularity. Triangu-

lar finite elements are judiciously placed in order to

minimize this effect, as shown in Fig. 2(b). A Dirichlet

boundary condition of 1 V is specified on the plate, and

the electrostatic solution is obtained using fourth-order

polynomials of the form Xrny” [7], which results in 65

interior node potentials, the unknowns in (9).

Capacitance is computed from the electrostatic en-

ergy of the field obtained by an integration of (V@) Z

over the picture frame plus an integration of q5 d@/dn

along B1, the picture frame boundary [4]. With free-

space permittivity assumed throughout, the capaci-

tance is computed to be 18.9 pF/m. An equipotential

plot of the solution within the picture frame is shown as

the dashed lines in Fig. 2(b).

Several methods are available to determine the exact

capacitance [11 ]– [13], which is given as 18.7 pF/m,

indicating our value to be high by about 1 percent. The

derivative singularity no doubt contributes to this error,

while the nature of the convergence of the finite-element

method predicts an energy (and hence capacitance)

higher than the correct value. As Mikhlin [14, ch. II]
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x

(b)

Fig. 3. Parallel plates with dielectric slab c,=9. (a) Cross section
showing thepicturefqame. (b) Electrostatic equipotentials intbe
reduced picture frame.

points out, the positive-definite functional (2) produces

a minimizing sequence in the energy sense, with exact

convergence occurring in the limit only with an energy-

complete function set. Therefore, our computed capaci-

tance is an upper bound, but is not a least upper bound

since our set of polynomials is not energy complete.

An “exact” equipotential plot, shown as solid lines in

Fig. 2(b), is obtained by solving, with care, the relevant

integral equation [1], and is reliable to three significant

figures. Discrepancies near the edge of the plate are ob-

served, while the equipotential plot tends to exaggerate

errors in the relatively flat field near the picture-frame

boundary. The constrained finite-element solution of the

field within the picture frame is clearly quite good, and

does represent a snapshot of the entire field.

B. Square Capacitor with a Dielectric Slab

Fig. 3(a) shows, in cross section, an infinitely long

slab of dielectric (c,= 9), filling the space between the

plates and extending outward from the edges a small

distance. This configuration resembles some microstrip

problems discussed in the literature [11], [12], although

normally the slab is taken as being infinitely wide as

well as long. Following identically the steps of the previ-

ous example, the reduced picture frame is solved pro-

ducing the equipotential plot shown in Fig. 3(b). Elec-

trostatic energies are used ([4 ] and [12]) to compute an

effective dielectric constant of 6.38. Since most of the

energy in the dielectric is concentrated near the plates,

an infinitely wide dielectric slab should produce a

dielectric constant just slightly higher; Bryant and

Weiss [12 ] published 6.47, which is about 1 percent

higher than our value.

The effect of the derivative singularity is clearly ob-

served [Fig. 3(b) ] in the wobble of the equipotentials in

the two triangular elements (indicated by dashed lines)

abutting the edge of the plate. (The other elements are

not indicated.)

Y

x

I
(d

(b)

845

(c)

Fig. 4. Parallel plates, using electric vector potential, with static
and harmonic solutions. (a) Cross section showing the picture
frame. (b) Static solution, with contours proportional to H..
(c) Harmonic solution, with contours proportional to H,, at 19
GHz at phase zero, in the reduced picture frame.

C. Parallel Plates; the Harmonic Problem

For this example, the z-directed electric-vector poten-

tial is, used. Equipotentials, then, are proportional to

contours of constant H, and prescribe the direction of

the electric field (see [15, pp. 129-131 ]).

Fig. 4(a) shows a familiar geometry—infinitely long

parallel plates with specified dimensions. Symmetry
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Flg.5. Antenna-type problem with dielectric ob~tacles using 3pic-
ture frames. (a) Cross section showlqg the wcture frames. (b)
Harmonic solution, contours proportional to H,, at 5 GHz, at
phase zero, in the reduced picture frames.

conditions are used to reduce the picture frame, with

appropriate axis boundary conditions. A line dipole

source is connected across the plates at the origin, pro-

ducing the inhomogeneous Neumann boundary condi-

tion shown. Free-space media constants are assumed

throughout, and a homogeneous Neumann boundary

condition is specified on the plate.

Fig. 4(b) shows the static solution. Comparison with

Fig. 2(b) shows the effect of the change in potential

function, the contours of one being normal to the con-

tours of the other.

Operating the dipole harmonically presents us with

the Helmholtz operator. The Green’s function is a

Hankel function—see [10, p. 266-268] and [15, pp.

198–204] for outward traveling waves, resulting in a

complex-valued field. A frequency of 19 GHz produces

a marginally positive-definite system, and Fig. 4(c)

shows equipotentials of the real part of the field at phase

zero. Barrington [15, p. 277] in discussing free-space

modes in spherical coordinates, presents the TM 01mode,

which shows a marked similarity to the contours of

Fig. 4(c).

D. A Radiating Antenna with Dielectric Obstacles

Fig. 5 (a) shows a cross section of two conducting slabs

and two dielectric bars, all infinite in length and parallel.

The conducting slabs, about the x = O plane, represent

an antenna with a thick-line dipole source connected

across the gap between them. The two dielectric bars

(e, = 100) represent obstacles, and are placed symmetri-

cally on the x axis. Three picture frames and contours

are placed as shown. The symmetry of the problem

again permits solution in one positive quadrant, re-

sulting in two reduced picture frames to consider. We

proceed to a harmonic solution, using the z-directed

electric-vector potential, and show equipotentials of

H, [Fig. 5(b)] for the source at 5 GHz at phase zero.

A rather small number of node poetntials was speci-

fied with large triangular elements, resulting in some

field errors observed in part of the larger picture frame

RI. (Finite-difference users might note that 60 nodes

represent a very coarse grid. With finite elements much

more field information is usually provided by each node

potential.) Nevertheless, the field is continuous from

one picture frame to the other, as evidenced by the con-

tour numbered 5. Also behavior of the field near the

dielectric bar is clearly correct.

Theoretically, the boundaries of the picture frames

should be transparent to the final solution. In practice

errors do occur, but the error at a picture-frame bound-

ary is no worse than the error at any element interface.

VII. CONCLUSIONS

The use of free-space integral equations to constrain

the local finite-element solution in picture frames ap-

pears to be entirely satisfactory for the solution of static

and time-harmonic problems in unbounded regions.

Time is spent solving problems in local regions of

interest; none is wasted elsewhere, However, the field

at intermediate locations can be computed at small

marginal cost. Field values in all space are available

from the picture-frame solutions. The finite-element

software at hand permits analysis with sources, in-

homogeneities, and anisotropies, when these can all be

placed within picture frames, and its power will be

greatly enhanced when derivative singularities are pro-

vided for. Thus two recurring problems of integral

methods are alleviated as follows.

1) Particular problem-dependent Green’s functions

need not be found.

2) Difficulties associated with singularity of Green’s

functions are side-stepped.

The advantages of the partial differential-equation

approach are as follows.

1) Inhomogeneities and anisotropies are fairly easily

provided for.

2) The problem is formulated as the solution of a

positive-definite system.

In summary, this paper has attempted to show how
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to use the partial differential and integral techniques,

each in its appropriate region, to solve problems that

could be intractable by either one individually.
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Short Papers

A Method for Computing Edge Capacitance of Finite

and Semi-Infinite Microstrip Lines

T. ITOH, R. MITTRA, AND R. D. WARD

Abstract—This short paper describes a method for computing the
edge capacitance of finite or semi-infinite sections of micro strip trans-

mission limes. The approach is based on Galerkln’s method applied

in the Fourier-transform domain. It is mathematically simple and
requires the inversion of rather small-size matrices.

INTRODUCTION

In this short paper, a new method is developed for calculating the
fringe (excess) capacitance due to an abrupt truncation of a uniform

microstrip line. 1 n contrast to the conventional matrix formulation

in the space domain, the method to be presented here is based upon

an application of Galerkin’s method in the spectral or Fourier-trans-

form domain. The spectral-domain approach has been successfully

applied to a number of other problems [1 ]– [3 ]. It is particularly

suitable for handling open-region problems of the type considered in

thk short paper.
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FORMULATION AND METHOD OF SOLUTION

In the TEM approximation, it is assumed that the discontinuity

capacit ante may be computed from the knowledge of the field solu-
tion derived in the static limit. This is done by first solving Poisson’s
equation for the potential function @ for the geometry under con-
siderate ion. (The geometry is shown in Fig. 1.) This, in turn, requires

the sol ution of the equation

V’+(2,y, z) = – ~~ P(X, Z)r$(y)

.&c,z)=o, Ixl >w/2, 1,1 >1/2 (1)

where C. is the free-space permittivity, 3(y) is the delta function, and
p (x, z) is the charge distribution on the strip. The strip is assumed to
have i nftnitesimal thickness and to be perfectly conducting. The

ground plane and the dielectric substrate are also assumed to be loss-

less. Next, we introduce the two-dimensional Fourier transform of

the pol ential @ via

~(~, y, p) = J” J “d(~,Y,Z)expj(a$ + Bz) d$dz. (2)
-. —.

Taking the transform of (l), we obtain

[
al

1–(a’+/3’)CfkY,y,f?)=–+@(a,Low~
where P is the transform of charge distribution defined by

(3)

(4)


