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Finite-Element Solution of Unbounded Field Problems

BRUCE H. MCDONALD axp ALVIN WEXLER

Abstract—An unbounded region is divided into local picture-
frame regions where a partial differential-equation solution is ob-
tained, with the remaining unbounded region represented by an
integral equation. (The method permits the use of free-space Green’s
functions, and thus special problem-dependent Green’s functions
need not be found.) The integral equation is formulated as a con-
straint upon the local picture-frame solutions, whence these local
solutions are solved directly by a variational method, using finite
elements, in a manner such that the problem of the Green’s-func-
tion singularity is side-stepped. The technique is applicable where
sources and media inhomogeneities and anisotropies are local, and
can all be placed within one or several picture frames. It is in these
cases that the integral-equation approach is at a particular disad-
vantage, and the use of a partial differential-equation technique is
advisable if not necessary. Examples presented include the static
and harmonic fields of a parallel-plate capacitor, a microstrip line
on a dielectric substratum, and a radiating antenna with dielectric
obstacles.

I. INTRODUCTION

IELD PROBLENMS, where the region of interest
Fis bounded, are customarily solved by formulating
a partial differential equation and using knowledge

of the boundary conditions to obtain the solution. When
the region of interest is unbounded it is customary to
use an integral-equation method to obtain a local charge
distribution, and from this the fields as required. Inte-
gral equations often possess singular kernels that can
produce “algorithmic nightmares” [1], and such meth-
ods depend upon the existence of an “action-at-a-dis-
tance” Green's function that may be very difficult to
find, especially when inhomogeneities or anisotropies
occur. Moreover, certain algorithmic niceties about a
partial differential-equation solution, along with demon-
strable capabilities for handling inhomogeneities and
anisotropies, invite the analyst to seek ways of solving
unbounded field problems using differential techniques.
If sources, media inhomogeneities, and anisotropies
are local, a surface may be defined to enclose them. The
internal region so defined is bounded, and differential
techniques may be used there. In the remaining un-
bounded region an integral equation may be formulated
using only a simple free-space Green's function. The
field at the surface may be interpreted two ways: as a
boundary condition for the differential-equation formu-
lation of a boundary-value problem; and as an equiva-
lent source distribution for the exterior integral equa-
tion. If continuity of field and first derivatives are en-
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forced between these two formulations at the surface,
the problem is readily solved.

When iterative procedures are used to solve this prob-
lem, the technique belongs to the well-known class of
boundary-relaxation methods. This paper presents a
method whereby the bounded region is solved directly
by a wvariational technique using finite elements, with
the integral equation as a constraint.

1I. GENERAL DESCRIPTION OF THE METHOD

A two-dimensional, or plane, problem is discussed in
detail, although extension to three-dimensional prob-
lems can readily be made.

Fig, 1(a) shows a portion of the infinite x—y plane in
Cartesian coordinates (for definiteness, z=0). A
bouncled region called a picture frame R; is placed so as
to contain all sources, inhomogeneities, and anisotropies.
The boundary of the picture frame is designated B;, and
the unbounded exterior region is Rz. The picture frame
represents a boundary-value problem with boundary
conditions as yet unspecified. It is solved by the finite-
element method.

We now introduce a closed contour i, as shown in
Fig. 1(b). The region of the plane outside C; is called R,,
and it is stipulated that the region of overlap between
R. and R, be source free, homogeneous, and isotropic.
This is not really a restriction, since the picture frame
and contour can be placed as desired.

In the exterior region R, an integral equation is used
to relate the field at any point in R, to the field (or a
function of the field that can be considered as an equiva-
lent charge distribution) on the contour Cy. In particu-
lar, we evaluate the integral equation at points on Bj,
the picture-frame boundary. This produces a set of con-
straints upon the picture-frame field that forces it to
assume, at the boundary By, the correct value for the
unbounded problem. The overlap region precludes
evaluation of the integral equation at a source point,
thus side-stepping problems with Green’s-function sin-
gularities.

Extension to several picture frames is straightforward
—a contour C may be defined consisting of a closed
contour Cj in each frame with cuts defined between
these Cj, which disappear in integration and which link
the picture frames together. See Fig. 1(c).

The method is applicable to problems having un-
bounded regions provided that:

1) sources, inhomogeneities, and anisotropies are
local, so that they may be completely enclosed
within picture frames;
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Fig. 1. The infinite plane, the picture frame, and associate contours.

(a) The picture frame Ry, its boundary B, and the external region
Rg. (b) The contour C; and the region external to it Re. (c) The
linking of two picture frames.

2) a free-space Green’s function exists;

3) local picture-frame solutions are constructed so
that field values at the boundary can be linearly
expressed in terms of field values on the contour C.

Physically, it is possible to interpret the exterior inte-
gral-equation formulation as the replacement of the
picture-frame solution by an equivalent-source or
charge distribution along the contour C). Alternatively,
the picture-frame solution involves the replacement of
the free-space problem by an equivalent-boundary con-
dition on B;.

Static and harmonic electromagnetic-field problems
are easily solved, and the finite-element method readily
admits the linear constraint equations.
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I1I. PrEVIOUS WORK

Several related schemes have recently been reported,
which, in the main:

1) have used finite-difference techniques for the pic-
ture-frame solutions;

2) have been used for only one picture frame, with no
indication otherwise;

3) have been restricted to Laplace’s equation;

4) have had to cope with singularities of Green’'s
functions.

Silvester and Cermak [2], [3] in effect chose C; very
close to B; within one grid point in their finite-difference
representation. This choice allows a direct linking of
potentials on Cy and B, with finite differences, but intro-
duces problems with Green’s-function singularities. The
scheme does not preclude choosing C; further away from
By, although such a choice would require additional
equations to relate potentials, and could possibly affect
convergence of the iterative process.

More recently Silvester and Hsieh [4] have applied
finite elements, using a functional which effectively
minimizes energy in all space, including Rg. This ap-
proach appears to be limited to the Laplace operator
(where total energy is finite), and the problem of singu-
larity of the Green's function remains.

Sandy and Sage [5] in effect choose C; to lie along the
surface of a conductor in the picture frame (a TEM
microstrip problem). Problems with Green’s-function
singularities are avoided, since potentials are not evalu-
ated at source points. They use an iterative procedure
to obtain their solution, beginning with an estimate of
potential on Bj, evaluating the field by SOR with finite
differences to determine sources on C;, and then com-
puting a potential for B; from the integral equation.
This potential is used to make a better estimate, and
the procedure recycles. They point out that convergence
is not guaranteed, and, in fact, use underrelaxation to
improve their estimate for potential on B;. Computation
time is undoubtedly high, and media inhomogeneities
must be very carefully provided for. Their technique
permits sources outside the picture frame when these
can be added as a lumped contribution.

Greenspan and Werner [6] discuss a finite-difference
approach for the Helmholtz operator, and show that
solutions do exist, are unique, and can be numerically
obtained. The contour (, is taken coincident with B,
thus producing singularity problems.

IV. Tae FINITE-ELEMENT METHOD

The finite-element method, used to produce a field
solution for a bounded region, such as R; in Fig. 1, is
described in detail by Silvester [16], and Richards and
Wexler [7], with extension to provide for anisotropic,
continuously inhomogeneous regions given by Wexler
[8]. The book by Zienkiewicz [18] is also a good ref-
erence.

Using the example of Poisson’s equation in a continu-
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ous inhomogeneous region, we have

—V-(eV9) = f within R;. (1)

The quadratic functional is discussed fully in [14, pp.
291-318], and using the forms given in [17, egs. (96)
and (112)], we have, in general

F =f eVo* Vo dxdy —f of* dxdy —f o*f dady (2a)
Ry Ry Ry

F = f e| Vo 12 dxdy — 2 Re { of dxdy} (2b)
R, Ry

where clearly V¢*-V¢p= | V¢>[ 2, The superscript * de-
notes the complex conjugate. For positive ¢, F possesses
the desirable characteristic of positive definiteness.

The field within R; is represented by a combination
of appropriate polynomial interpolatory functions «,,
defined on an element basis, and node potentials ¢,,
which are field values at # specific points in R;

n

¢ = Z a,P, (3&)
Fe=1
where by definition «, takes on the values
1, at node §
o = { (3b)
0, at other nodes.

The subscript j refers to node positions, some internal
(subscripted I) and some on the boundary (subscripted
B). Then, in vector notation, (3a) may be written

¢ = gl + o/Tédr = dplas + oTay. 4)

We may define four matrices, Ay, Arp, Apr, and Apg,
for example

Apr = f eVaVoyT dxdy (5)
R

1

and vectors by and bp, for example

b = f arf dxdy. (6)
B

1

The integral-equation constraint produces a linear
relationship between ¢p and ¢;, which is written, as
shown in Section V, (17)

és = Mér. (7
Now we make use of (4)—(7) to rewrite (2)
F = {Amr + AsM + M7 Ap; + MTApeM} ér
— 2¢7{b; + MThz}. (8)

Positive definiteness of the functional is not altered by
the substitutions. At the solution point, F is a minimum
and its derivative with respect to the vector ¢; is a zero
vector. Performing this differentiation, and equating
this derivative to a zero vector, we obtain the positive-
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definite system
[Arr + ArsM + MTAg + M7 AppM)ér
= b[ + MTbB. (9)

The matrices produced by this finite-element formu-
lation are smaller in size but more dense than finite-
difference matrices. The problems presented here con-
sist of about 60 unknowns. Although these matrices
may be block sparse with an appropriate node ordering
system, permitting large problems to be solved by block-
iterative techniques, they are treated here as being dense.

Types of errors occurring in the finite-element method
are discussed in [7], along with some indication of com-
puter-time requirements.

For the case of several picture frames, the representa-
tion is extended to include all nodes in all picture frames,
and the derivation proceeds identically.

The finite-element method provides good solutions
when the field is naturally polynomic or close to poly-
nomic. Derivative singularities, such as those occurring
at edges of conductors, are not well approximated. Ex-
tensions of the finite-element method to provide for
such singularities are presented by Décreton and Wexler
[9]; much improved accuracy is obtained.

The Helmholtz operator alters the functional slightly,
and positive definiteness is guaranteed only for fre-
quencies below the lowest eigenfrequency of any picture-
frame region. These regions should therefore be kept
sufficiently small to ensure that this is so. This will be
discussed in a subsequent publication.

V. THE INTEGRAL-EQUATION CONSTRAINT

In the region outside C; in Fig. 1(b), which we have
called R., Laplace’s equation holds

Vig(x, y) = 0. (10)
Also, the Green'’s relation
—V2G(w, 3| %0, y0) = (& — %0, ¥ — %) (11)

is applicable, and since R, is assumed to be source free,
homogeneous, and isotropic, the free-space Green’s func-
tion may be used

1

In V(& — x0)* + (y — 30)2 (12)

G(x;yl xﬂ’yo) = - 2

mTEY

Multiplying (10) by G, (11) by ¢, adding the resulting
equations, and integrating over R,, we obtain

sy = [ {6yl 6 vt

R,

— & DV2G(x, y| £ )} dEdp  (13)
for any point (x, ) in R.. Applying Green's theorem, we

obtain:
¢ G
#(x, 3) =f (G — = ¢ ~> ds. (14)
a n an
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Note that C is only part of a larger closed-contour C,
the outer parts of which are cuts which disappear in
integration, and a part at infinity whose contribution
to the integration vanishes. See Stakgold [10, pp.
142-143].

Field quantities on Ci in (14) may be represented by
the node functions and potentials given by (4)

6ho G
4.5 =)
a on on
r 3G
+ { f <G das” _ aBT—> ds} o5 (15)
¢y on on

Once all node potentials are established, (15) is used to
determine the field at any point in space outside the
picture frame.

To produce the constraint equation, (15) is evaluated
at all node points on the boundary B;. Thus

b = P1ér + Ppds

¢ = ds} ¢r

(16)

where rows of the matrices P; and Py are determined
from (15) and evaluated for each of the boundary node
points.

An adjustment of (16) puts it into the form of (7)

(I)B = (I - PB)_IPI(I)[ = M(l)[ (17)

Again there is no restriction to just one picture frame.
If more than one picture frame is employed, each has
its own boundary nodes and contour C;. The derivation
proceeds similarly for the Helmholtz Green's function,
excepting that complex arithmetic must be used.

Contour integration along C; is performed numerically
using the trapezoidal rule at present; three-figure accu-
racy is easily obtained. The computer time required for
these integrations has been found not to exceed 30 per-
cent of that required to build the finite-element ma-
trices.

VI. EXAMPLES

Several examples are presented using the method de-
scribed. The square parallel-plate capacitor shows the
accuracy of the scheme for an electrostatic problem,
while other examples show placement of dielectric ma-
terial, harmonic-field problems, and the use of several
picture frames in one problem.

A. The Square Parallel-Plate Capacitor

A cross section of the geometry is shown in Fig. 2(a),
representing two infinitely long, thin, conducting plates
of width equal to their separation. A single picture-
frame boundary and contour are labelled B; and Cj,
respectively. Considering the symmetries involved, the
solution can be obtained in the positive quadrant, and,
accordingly, finite elements are placed there. This re-
duced picture frame is bounded by one-quarter of By,
where the integral constraint is applied, and by parts
of the x and y axes, where homogeneous Dirichlet and
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Fig. 2. The parallel-plate capacitor. (a) Cross section showing the
picture frame. (b) Electrostatic equipotentials in the reduced pic-
ture frame.

Neumann boundary conditions are imposed, respec-
tively, to provide for the symmetries. Integration along
the contour ( is facilitated by choosing it symmetri-
cally, in order that appropriately signed images of the
field values in the positive quadrant may be used in the
other three.

The edge of the capacitor plate within the reduced
picture frame causes a derivative singularity. Triangu-
lar finite elements are judiciously placed in order to
minimize this effect, as shown in Fig. 2(b). A Dirichlet
boundary condition of 1 V is specified on the plate, and
the electrostatic solution is obtained using fourth-order
polynomials of the form xmy» [7], which results in 65
interior node potentials, the unknowns in (9).

Capacitance is computed from the electrostatic en-
ergy of the field obtained by an integration of (V¢)?
over the picture frame plus an integration of ¢ d¢/dn
along B, the picture frame boundary [4]. With free-
space permittivity assumed throughout, the capaci-
tance is computed to be 18.9 pF/m. An equipotential
plot of the solution within the picture frame is shown as
the dashed lines in Fig. 2(b).

Several methods are available to determine the exact
capacitance [11]-[13], which is given as 18.7 pF/m,
indicating our value to be high by about 1 percent. The
derivative singularity no doubt contributes to this error,
while the nature of the convergence of the finite-element
method predicts an energy (and hence capacitance)
higher than the correct value. As Mikhlin [14, ch. II]
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I =0 reduced picrurefruye )

Fig. 3. Parallel plates with dielectric slab ¢ =9. (a) Cross section
showing the picture frame. (b) Electrostatic equipotentials in the
reduced picture frame.

points out, the positive-definite functional (2) produces
a minimizing sequence in the energy sense, with exact
convergence occurring in the limit only with an energy-
complete function set. Therefore, our computed capaci-
tance is an upper bound, but is not a least upper bound
since our set of polynomials is not energy complete.

An “exact” equipotential plot, shown as solid lines in
Fig. 2(b), is obtained by solving, with care, the relevant
integral equation [1], and is reliable to three significant
figures. Discrepancies near the edge of the plate are ob-
served, while the equipotential plot tends to exaggerate
errors in the relatively flat field near the picture-frame
boundary. The constrained finite-element solution of the
field within the picture frame is clearly quite good, and
does represent a snapshot of the entire field.

B. Square Capacitor with a Dielectric Slab

Fig. 3(a) shows, in cross section, an infinitely long
slab of dielectric (e.=19), filling the space between the
plates and extending outward from the edges a small
distance. This configuration resembles some microstrip
problems discussed in the literature [11], [12], although
normally the slab is taken as being infinitely wide as
well as long. Following identically the steps of the previ-
ous example, the reduced picture frame is solved pro-
ducing the equipotential plot shown in Fig. 3(b). Elec-
trostatic energies are used ([4]and [12]) to compute an
effective dielectric constant of 6.38. Since most of the
energy in the dielectric is concentrated near the plates,
an infinitely wide dielectric slab should produce a
dielectric constant just slightly higher; Bryant and
Weiss [12] published 6.47, which is about 1 percent
higher than our value.

The effect of the derivative singularity is clearly ob-
served [Fig. 3(b) ] in the wobble of the equipotentials in
the two triangular elements (indicated by dashed lines)
abutting the edge of the plate. (The other elements are
not indicated.)
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Fig. 4. Parallel plates, using electric vector potential, with static
and harmonic solutions, (a) Cross section showing the picture
frame. (b) Static solution, with contours proportional to H..
(c) Harmonic solution, with contours propertional to H,, at 19
GHz at phase zero, in the reduced picture frame.

C. Parallel Plates; the Harmonic Problem

For this example, the z-directed electric-vector poten-
tial is used. Equipotentials, then, are proportional to
contours of constant H, and prescribe the direction of
the electric field (see [15, pp. 129-131]).

Fig. 4(a) shows a familiar geometry—infinitely long
parallel plates with specified dimensions. Symmetry
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reduced pictureframes

(b}

Fig. 5. Antenna-type problem with dielectric obstacles using 3 pic-
ture frames. (a) Cross section showing the picture frames. (b)
Harmonic solution, contours proportional to H,, at 5 GHz, at
phase zero, in the reduced picture frames.

conditions are used to reduce the picture frame, with
appropriate axis boundary conditions. A line dipole
source is connected across the plates at the origin, pro-
ducing the inhomogeneous Neumann boundary condi-
tion shown. Free-space media constants are assumed
throughout, and a homogeneous Neumann boundary
condition is specified on the plate.

Fig. 4(b) shows the static solution. Comparison with
Fig. 2(b) shows the effect of the change in potential
function, the contours of one being normal to the con-
tours of the other.

Operating the dipole harmonically presents us with
the Helmholtz operator. The Green's function is a
Hankel function—see [10, p. 266-268] and [15, pp.
198-204] for outward travelling waves, resulting in a
complex-valued field. A frequency of 19 GHz produces
a marginally positive-definite system, and Fig. 4(c)
shows equipotentials of the real part of the field at phase
zero. Harrington [15, p. 277] in discussing free-space
modes in spherical coordinates, presents the TM ¢ mode,
which shows a marked similarity to the contours of
Fig. 4(c).
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D. A4 Radiating Antenna with Dielectric Obstacles

Fig. 5(a) shows a cross section of two conducting slabs
and two dielectric bars, all infinite in length and parallel.
The conducting slabs, about the x=0 plane, represent
an antenna with a thick-line dipole source connected
across the gap between them. The two dielectric bars
(e, =100) represent obstacles, and are placed symmetri-
cally on the x axis. Three picture frames and contours
are placed as shown. The symmetry of the problem
again permits solution in one positive quadrant, re-
sulting in two reduced picture frames to consider. We
proceed to a harmonic solution, using the z-directed
electric-vector potential, and show equipotentials of
H, [Fig. 5(b)] for the source at 5 GHz at phase zero.

A rather small number of node poetntials was speci-
fied with large triangular elements, resulting in some
field errors observed in part of the larger picture frame
R;. (Finite-difference users might note that 60 nodes
represent a very coarse grid. With finite elements much
more field information is usually provided by each node
potential.) Nevertheless, the field is continuous from
one picture frame to the other, as evidenced by the con-
tour numbered 5. Also behavior of the field near the
dielectric bar is clearly correct.

Theoretically, the boundaries of the picture frames
should be transparent to the final solution. In practice
errors do occur, but the error at a picture-frame bound-
ary is no worse than the error at any element interface.

VI1I. ConcLUSIONS

The use of free-space integral equations to constrain
the local finite-element solution in picture frames ap-
pears to be entirely satisfactory for the solution of static
and time-harmonic problems in unbounded regions.
Time is spent solving problems in local regions of
interest; none is wasted elsewhere. However, the field
at intermediate locations can be computed at small
marginal cost. Field values in all space are available
from the picture-frame solutions. The finite-element
software at hand permits analysis with sources, in-
homogeneities, and anisotropies, when these can all be
placed within picture frames, and its power will be
greatly enhanced when derivative singularities are pro-
vided for. Thus two recurring problems of integral
methods are alleviated as follows.

1) Particular problem-dependent Green’s functions
need not be found.

2) Difficulties associated with singularity of Green’s
functions are side-stepped.

The advantages of the partial differential-equation
approach are as follows.

1) Inhomogeneities and anisotropies are fairly easily
provided for.

2) The problem is formulated as the solution of a
positive-definite system.

In summary, this paper has attempted to show how
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to use the partial differential and integral techniques,
each in its appropriate region, to solve problems that
could be intractable by either one individually.
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Short Papers

A Method for Computing Edge Capacitance of Finite
and Semi-Infinite Microstrip Lines

T. ITOH, R. MITTRA, axp R. D. WARD

Abstract—This short paper describes a method for computing the
edge capacitance of finite or semi-infinite sections of microstrip trans-
mission lines. The approach is based on Galerkin’s method applied
in the Fourier-transform domain. It is mathematically simple and
requires the inversion of rather small-size matrices.

INTRODUCTION

In this short paper, a new method is developed for calculating the
fringe (excess) capacitance due to an abrupt truncation of a uniform
microstrip line. In contrast to the conventional matrix formulation
in the space domain, the method to be presented here is based upon
an application of Galerkin’s method in the spectral or Fourier-trans-
form domain. The spectral-domain approach has been successfully
applied to a number of other problems [1]-[3]. [t is particularly
suitable for handling open-region problems of the type considered in
this short paper.
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FORMULATION AND METHOD OF SOLUTION

In the TEM approximation, it is assumed that the discontinuity
capacitance may be computed from the knowledge of the field solu-
tion derived in the static limit. This is done by first solving Poisson’s
equation for the potential function ¢ for the geometry under con-
sideration. (The geometry is shown in Fig. 1.) This, in turn, requires
the solution of the equation

1
Vep(x, y,2) = — ;p(x, 2)5(y)

olx,2) =0, |x| >W/2, |3z] >1/2 (1)
where ¢, is the free-space permittivity, 8(y) is the delta function, and
p(x, 2) is the charge distribution on the strip. The strip is assumed to
have infinitesimal thickness and to be perfectly conducting. The
ground plane and the dielectric substrate are also assumed to be loss-
less. Next, we introduce the two-dimensional Fourier transform of

the poiential ¢ via

Fla, 3,8 = f f é(x, y, 2) exp jlax + Bz) dxds. (2)
Taking the transform of (1), we obtain
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where jj is the transform of charge distribution defined by
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